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The present work is an analytical study of the stability of interfaces between fluids 
in motion, special attention being given to the role of surface tension without 
consideration of viscous effects. A variational approach based upon the principle 
of minimum free energy, which was first formulated for stagnant fluids, is 
applied to fluids in motion. This generalization is possible if viscous and inertia 
effects are unimportant as far as stability is concerned. One stability problem is 
studied in detail: a gas jet impinging on a free liquid. The analytical results 
obtained by this variational technique lie within the range of accuracy (15 yo) of 
the experimental results for this gas-jet problem. The method is very general 
and therefore can be applied Do quite a number of interface stability problems. 

1. Introduction 
The interface between two immiscible fluids in motion can become unstable 

under certain flow conditions. In  recent years several authors have been con- 
cerned with this type of instability in connexion with a number of fluid flow 
problems. The present work reports an analytical study of these stability pheno- 
mena which was motivated by its possible application to the splattering of 
molten metal as observed during electric arc welding. The stability of a weld pool 
during high-current welding can best be studied by analysing the stability of the 
interface between a quiescent liquid and a gas jet impinging upon it (see Bergh- 
mans 1970). A gas jet impinging on a liquid has also been used as a simple model 
for the study of gas absorption into liquid systems by Mathieu (1960, 1962), 
because of its importance in metallurgy. Rosler & Stewart (1968) considered the 
impinging jet a good model for the study of liquid dispersion in more complex 
situations, while Turkdogan (1966) mentioned that it can be used to measure 
surface tension and to study the spreading of turbulent jets. 

An axisymmetric gas jet impinging at  right angles on a liquid at  rest will cause 
an indention (see figure I). Collins & Lubanska (1954), Banks & Chandrasekhara 
(1962), Turkdogan (1966) and Cheslak et aZ. (1969) studied experimentally t'he 
dependence of the maximum depth of penetration and the shape of the indention 
upon the type of liquid-gas combination, the jet strength, the jet diameter d j  
and the separation Hi between the orifice and the undisturbed liquid. Mathieu 
(1960, 1962) in addition considered jets which did not impinge vertically upon 
the liquid surface. All these authors mentioned that the interface fluctuated at  
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L 
FIGURE 1. Gas jet impinging on a free liquid surface. 

(dynlcm) 
FIGURE 2. Critical jet velocity V,, versus surface tension CT. 

0, data of Rosler & Stewart (1968). 

large jet strengths. In  1968 Rosler & Stewart published their work on the 
stability of the gas-liquid interface and observed that a critical average jet 
velocity v,, exists at which the interface becomes unstable. Keeping the jet 
diameter and jet separation constant, they measured the critical average jet 
velocity as a function of surface tension (see figure 2). The oscillations of the 
interface become more vigorous when the jet velocity is further increased until 
a second type of instability develops which is characterized by dispersion of 
liquid droplets from theinterface. The present workattempts to give a theoretical 
explanation of the first type of instability. 

Banks & Chandrasekhara (1962) showed that, under the conditions in which 
instabilities were observed, the interfacial shear stness was too small to give rise 
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to such phenomena. Rosler & Stewart (1968) pointed out that the motion of the 
liquid can be neglected, while their data clearly shows surface tension to be the 
important parameter involved. 

The effects of surface tension upon the stability of the interface of two fluids in 
relative motion have been analysed by a number of investigators. The early 
work on the subject has been reported by Lamb (1932), and more recently by 
Taylor (1950)) Bellman & Pennington (1954), Milne-Thomson (1952)) Chandra- 
sekhar (1961) and Rajappa & Chang (1966). The case of stagnation-point flow 
was never treated however. The method applied by these researchers involves 
determining the gowth in time of a perturbation of the interface; such a tech- 
nique has already been used by the author (Berghmans 1970). It shows that the 
stagnation-point region of the interface can be unstable and that the critical jet 
strength depends upon surface tension, jet size and liquid and gas densities. 
However, owing to the complexity of the shape of the interface the analysis has 
to be localized in a small region around the stagnation point. Because of this, the 
relation between critical jet strength and surface tension contains two constants 
which can not be determined by this localized technique. The present variational 
approach takes the whole indentation profile into account and therefore does not 
have this disadvantage. The variational analysis will be given in the following 
section, after which it will be applied to the stability problem of the impinging jet 
(see $3).  

2. The variational approach to interface stability problems 
Historically, scientists have looked at  the contact surface between two different 

media in two ways, taking the molecular view, based on the attraction forces 
between molecules, or the thermodynamic view, based on ascribing an energy to 
the interface. The earlier molecular viewpoint culminated in the works of Laplace 
(1806) and Gauss (1906). However, thisapproach provedunsatisfactory andit was 
felt that some thermodynamic concepts had to be introduced to produce a more 
consistent theory. This was first done by Gibbs (1876, 1878), who ascribed an 
energy to the interface, the energy per unit area being called ‘surface tension’. 
This tension depends only upon the two substances in contact and their thermo- 
dynamic states. It is this approach to surface phenomena which will be followed 
here. 

Following the analysis by Tyuptsov (1966), we consider a system consisting of 
a closed rigid container (see figure 3) in which two stagnant immiscible fluids 
occupy the regions a, and 0, respectively. The contact surface X12 between 
the two fluids (hereafter called the meniscus) intersects the container wall along 
the line L (the wetter perimeter). The subscripts 1 and 2 designate the fluids, 
while the subscript 3 refers to the container. The fluid densities are p1 and pz, 
and x is the position vector. By assuming that the body forces acting on the 
system are derivable from a potential (conservative system), one can introduce 
the potential energies P1(x) and Pz(x) per unit volume in regions 1 and 2 respec- 
tively. 

For such a system to be in stable equilibrium it is necessary that its free energy 
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FIGURE 3. Co-ordinate system for container filled with two fluids. 

be minimized (see Landau & Lifschitz 1959). The portion V of the free energy 
which varies because of changes at the interface is given by 

‘ = g12 s,,, ’’ + g23 Jx,, ’’ f g13 I,,, d X +  Ja P,(x)dQ+ji22P2(x)dQ, (1) 

where aij = gji is the surface tension between media i andj, and Cij is the contact 
surface between these media. 

The first three terms are the contributions of the surface energy to  the free 
energy, and the last two terms represent the contributions of the body forces. 
V has to be a minimum in order to have a stable equilibrium. The functional Y 
must therefore satisfy the conditions 

6V = 0, 62V > 0, (% (3) 

in which 8 is the variational symbol. Condition (2) leads to Laplace’s equation for 
capillary phenomena, from which the shape of the interface can be determined. 
Condition (3) ensures that the equilibrium shape determined by (2) is stable. 
The first and second variations of the free energy have to be expressed in terms of 
the displacement b(x)  of the fluid particles of the two media. The function 
Sx(x) will be assumed sufficiently differentiable and integrable. 

We now define n3 as the unit vector along the inward normal to the vessel, n, as 
the unit vector perpendicular to the meniscus and directed into region 1, and e4 
as a unit vector tangential to the wetted perimeter L and directed in a counter- 
clockwise direction for an observer looking from region 1. We also introduce 

e5 = e4 x n,, e6 = ep x n3. 

The curvature H(u ,  v) is defined as 

(4)1 ( 5 )  

These vectors are shown in figure 4 for the case ofa  cylindrical container. 

mu, v) = 1/2R,(u, v), (6) 
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FIGURE 4. Co-ordinate system for a cylindrical container filled with two fluids. 

where u and v are the curvilinear co-ordinates of the meniscus and R, is the 
average radius of curvature. Tyuptsov (1966) shows that in order to satisfy (2) 
it is necessary that 

Pl--P2 = 2g12H on 2 1 2  ( 7 )  
and s12 COB 6 = v3, - crz3 on L, (8) 

cosc = e5.e6 = nl.n3. (9) 

where p is the pressure and 5 the contact angle, defined by (see figure 4) 

In  order for the equilibrium shape of an interface satisfying ( 7 )  and (8) to be 
stable, condition (3) must be satisfied simultaneously. 

The second variation of the free energy around an equilibrium shape satisfying 
(7 )  and (8) can be written as (see Tyuptsov 1966) 

JL[(R5cosc-R6) W+- Wsincdl, (10) ""I 8% -- 

where 

K = 1/R,Rk, w = 8x.e6, (1% (13) 

n = distance measured along n,, Rl, Rk = principal radii of curvature of the 
meniscus, V2 = Laplace operator, s5 = arc length along e5, N = displacement of 
X12 in the direction of n,, R, = curvature of the intersection of surface B12 with 
the plane containing e5 and n,, R6 = curvature of the intersection of the con- 
tainer wall with the plane containing e6 and n3. Equation (10) shows the second 
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variation to consist of two terms, the first term being due to the displacement of 
the meniscus and the second to the displacement of the wettedperimeter. It is the 
former which contains a normal derivative of the pressure difference. This 
accounts for the changes in potential energy of the system due to the displace- 
ment of the interface. The other parts of the meniscus term arise because of the 
curvature of the displacement and of the interface itself. 

Since the container is rigid and both fluids are incompressible, the volume of 
each phase remains constant and therefore the displacement has to satisfy 

The expression (10) is quadratic in the displacement and, since one is interested 
only in the sign of the second variation, one can normalize the displacement: 

N2dC = 1. L, 
The smallest value of the right-hand side of (10) is equal to the smallest value of 

v in the following eigenvalue problem: 

r N - V N - v N  = ,u on C,,, (16) 

(R5 cos 5- R6) N + (aN/as,) sin y = 0 on L. (17) 

The constant ,u is chosen such that (14) is satisfied; v is the eigenvalue of the 
equation. Therefore 

The stability problem can now be expressed in the following way: for the 
stability of a conservative system consisting of two immiscible fluids it is neces- 
sary that the minimum eigenvalue vmin of the problem (14)-(17) be non-negative 
and it is sufficient that it be positive. Attention will therefore be focused on the 
critical condition marking the onset of instability determined by 

vmin = 0. (19) 

The set of equations (14)-( 17) can be simplified somewhat for an axisymmetric 
interface. Let r ,8  and z be the usual cylindrical co-ordinates; as curvilinear 
co-ordinates of the meniscus we can take 8 and the arc length s of the intersection 
of the meniscus with a plane 0 = constant. If s, and sd are the limits of the arc 
length s, then the equations to be solved are 

(23) 
aN 

and (R,cosC-R,)N+-sin{= 0 at  s = s,, sd. 
as 
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If one or both ends of the curves x(s)  lie on the z axis, then (23) at this end-point 
must be replaced by the requirement of a bounded solution at this point. 

It is convenient to express N ( s ,  6 )  in the following series expansion: 
m 

N(s,8)  = X (fm(s)cosm8+g,(s)sinm0). (24) 
m=O 

Substituting (24) into (22 ) ,  (23) and (20) gives (with primes denoting differentia- 
tion with respect to the arc length s) 

f ~ + ( r ' ~ r ) f ; - 7 f 0 + v ~ ~ + ~  = 0 for s, < s < S& ( 2 5 )  

(26) (R5 cos 5- R6) f o  + f; sin 5 = 0 at  s = s,, sd, 

Js;fo(s)r(s)ds = 0, (27) 

r' m2 

r2 
fk+7f&-7fm--f +vf?,,=O for s , < s < s ,  (m=1,2 ,  ...), (28) 

(R5cos[-R,)fm+f&sing= 0 at s=s,,sd (m=  1,2, ...). (29) 

Furthermore equation (21) must be satisfied. 
A pair of equations identical to (28) and (29) can be written down for g,(s). 

Since they are identical, from now on only the functionsf,(s) will be considered. 
If we define vo, 1, vo, 2, . . ., and in general Y,,~, v,, 2, . . . , as  the eigenvalues of (25)- 

(29) arranged in increasing order for each equation, then it is evident that 

vmin = min{v0,,, min(v,,,)) for m = 1,2,  ... , (30) 

min(v,,,) = vl,, for m = 1,2 ,..., (31) 

so that Ymin = min ( v o , ~  ~ I , I ) *  (32) 

m = l  (33) 

It can be shown that 

The problem therefore isreduced to solving (25)-(29) with 

and looking for the smallest eigenvalue of these equations. Condition (21) now 
becomes irrelevant since it is satisfied by all the functions f, and gm. 

The two ordinary differential equations for fo (s )  andfi(s) with the appropriate 
boundary conditions now have to  be solved, ~ ( s ) ,  ~ ( s ) ,  r'(s), R5 and R6 being 
determined by the shape of the interface. Therefore, first the shape of the inter- 
face satisfying (7) and (8) has to be found, after which its stability can be deter- 
mined by the set of equations (25)-(29) (with m = 1). 

The above analysis considered only stagnant fluids. However, under Gertain 
conditions this analysis is also applicable to systems with fluid flow. At the 
interface of fluids in relative motion, as, for instance, in the case of a gas jet 
impinging upon a liquid, a boundary layer is formed. In  this boundary layer, 
close to the interface, inertia forces can be neglected. If, furthermore, viscous 
effects are small compared with surface tension forces, the interface can be 
considered to be surrounded by two layers of stagnant fluids. The pressure dis- 
tribution in these layers is the same as the pressure distribution a t  the outer 
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edges of the boundary layers since the pressure in a boundary layer is not depen- 
dent on distance from the wall. To study the stability of such an interface the 
same analysis as the one used for stagnant fluids can be used since the fluids in the 
immediate neighbourhood of the interface are also stagnant and only displace- 
ments of the fluids in this neighbourhood are of importance. This implies of course 
that instabilities caused by inertia (Kelvin-Helmholtz instabilities) or by purely 
viscous effects will not be detected by this approach. 

In the case of the impinging gas jet, simple calculations show that viscous 
effects at the interface are very small compared with capillary effects under the 
conditions a t  which the instabilities have been observed. Therefore the varia- 
tional approach promises to give good results for this particular problem; this will 
be found to be the case in the following section. 

3. Stability of the interface of a gas jet impinging on a liquid 
The theoretical results obtained in this section will be compared with the 

experimental observations of Rosler & Stewart (1968) on the stability of the 
interface of an air jet impinging on water. In  these experiments the width of the 
container was about 200 times the jet radius and about 20 times the diameter of 
the cavity formed by the jet. For this reason the present calculations are made for 
an axisymmetric jet impinging on a liquid in a container whose walls are at an 
infinite distance from the axis of symmetry. 

Using the co-ordinate system of figure 1, equation ( 7 ) ,  which determines the 
shape of the indentation, can be written in the following form: 

d2h l d h  
dr2. r d r  (34) 

with 

g = gravitational constant, Ap = over-pressure due to the impinging jet, 
CT = surface tension of the specific liquid-gas combination. The boundary con- 
ditions (8) become 

P1- P2 = AP + (P I  - Pz) gh’ (35)  

dh/dr = 0 at r = 0, (36) 

h ( a )  = 0. (37) 

To determine A p  the experimental data of Gibson (1934) for laminar jets 
impinging on a flat plate were used. Equations (34)-( 37) were solved by Rosler 
& Stewart (1968) by means of the Gibson data and they found good agreement 
between the calculated and the experimentally determined indentation profiles. 
Therefore Gibson’s data will also be used here to determine the cavity profile. 
The pressure distribution A p  is approximated by 

P ~ ~ ~ C O S  (0.826r/rj) for r < 1.2ri, (38) 

4*53pm,,exp ( -  1.76r/ri) for r > 1.2rj, (39) 
AP= { 

where r j  = jet radius, p m a x  = *pl Vg = jet strength, 5 = maximum jet velocity. 
A comparison of this approximation with Gibson’s data is made in figure 5 below. 
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As was found by Poreh & Cermak (1959), it takes a distance of 10 jet diameters 
downstream from the jet orifice for the mixing of jet gas with ambient gas to 
affect the velocity a t  the centre of the jet. Up to this distance the gas velocity is a 
function of the radial position only. Since the distance between the jet orifice 
and the liquid surface was less than 10 jet diameters in the experiments of Rosler 
& Stewart (1968), no h dependence is included in (38) and (39). 

The boundary conditions (26) and (29) can be simplified in the following way. 
Since sd now becomes infinite, (26) and (27) imply thatf, andfh go to zero in the 
limit s --f co. Also since the first limit s, is zero fo has to be bounded at the origin. 
Furthermore 

This condition has to be satisfied otherwise the radius of curvature of the dis- 
placementf, would be zero at the origin. This would give rise to infinite pressure 
differences and is therefore not allowed. f, must go to zero when r --f 00 otherwise 
infinite forces would be required to establish this displacement, which is physically 
impossible. At the originf, is zero because of (28). 

The problem is now reduced to finding the conditions under which the two 
following differential equations have a solution: 

f A = O  at r = 0 .  (40) 

with 

and 

The coefficient 7(s) appearing in (45) and (41) is a function of s since 

with 

i a  
7(s) = a an ( p ,  - p 2 )  - 

(44) 

(45) 

(48) 

(49) 

At each point of the interface the pressure difference pl  -p z  and its variation in 
a direction perpendicular to the interface can be determined by means of (34)-( 39) 
after the shape of the indention has been determined. The radial co-ordinate and 
the arc length s are related by 

d s =  dr [1+(3’]*. 

The function h(r) is of course determined by solving (34)-(37). The value of ,u 
which assures that (27) is satisfied goes to zero when the walls of the container are 
a t  infinity (see Berghmans 1970). Therefore only solutions of the homogeneous 
part of (41) are required. 
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Owing to the complexity of the problem recourse had to be made to numerical 
techniques. The computer program which was written to solve this problem can 
be divided in two sections. The first part determines the indentation profile. An 
iteration procedure was required for the centre-line depth since the boundary 
conditions (36) and (37) are separated. This entailed choosing centre-line depths 
which straddled the correct value. It was found that considerable care had to  be 
taken in choosing the finite-difference approximation to solve (34). A Runge- 
Kutta method as described by Collatz (1966) was used in the neighbourhood of 
the axis of symmetry, while for larger radial distances (larger than 150 steps) an 
ordinary forward-difference approximation was used. The step size did not 
affect the accuracy of the calculations by more than 1 yo if it was smaller than 
0.002 jet diameters. The step size was always kept smaller than this value. 

After finding the indentation profile the differential equations (41) and (45) 
together with their boundary conditions were solved. Considerable simplifica- 
tion was obtained by taking the radial distance r as the independant variable 
instead ofthe arclengths. After substitution of (50), equations (41), (45) and (48) 
become 

Equations (51) and (52) yield the same problems for small r as equation (34). 
The same numerical procedure was used for all these equations. 

The equations (51)-(53) can be made dimensionless by introducing two 
dimensionless groups: the Weber number W and Bond number B, which are 
defined by 

W 2  = p1 T'trj/O-, (54) 

B2 = (P2 -Pl)gG/0-, (55) 

where p1 is the gas density, p2 the liquid density and V ,  is the average jet velocity. 
If for the same value of the Bond number the function fo diverged to large positive 
values for one Weber number and to large negative values for another Weber 
number, it  was decided that the critical Weber number had to lie somewhere 
between these two Weber numbers. The same is true for fl. By narrowing these 
limits it was possible to determine the critical Weber number, belonging to a 
certain Bond number, to within 5 % of its nominal value. It was the function fo 
which determined the onset of instability. The Weber numbers which gave 
Convergent solutions of fl were always larger than the ones which gave convergent 
solutions of fo (for the same Bond number). Further details about the computer 
program can be found in Berghmans (1970). 

Figure 5 gives a typical indention profile with the corresponding fo(r) distribu- 
tion. The results of the numerical analysis are plotted in figure 6 in terms of 
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0 1 
r1.j 

FIGURE 5 .  Pressure distribution of a circular free jet impinging on a flat plate. x , data of 
Gibson (1934); -, equations (38) and (39). Analytical results for B = 0.47, W = 1.3, 
h, = 5-3 T ~ :  +, normalized indentation depth ; 0, f&). 

B: 
FIGURE 6. Critical Weber number versus critical Bond number for a gas jet impinging on a 

liquid. x , data of Rosler & Stewart (1968); 0, analytical results; -, equation (56). 

critical Bond number and critical Weber number. As can be seen from this figure 
the present results fall within the range of accuracy of the experimental data of 
Rosler & Stewart (1968), which is rather surprising. The stability calculations 
are very sensitive to the assumed pressure distribution in the neighbourhood of 
the stagnation point. The choice of the approximation to the actual pressure 
distribution taken in the present calculations is therefore very good. A good 
approximation to both the experimental and the analytical results is given by 

W,Z = 1.04+ 3*3B,2, 
which is shown in figure 6. 
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For a certain liquid-gas combination, jet diameter and jet separation, in- 
creasing the jet velocity will cause an increase in W so that W follows the vertical 
line in figure 6. The interface will remain stable as long as one remains in region I. 
On reaching point 2 (see figure 6) the interface becomes unstable and will remain 
so as long a,s one stays in region 11. 

Equation (56) can be written as 

vZ,,c = (I/&) [3'3(P2 -P i )gr j  -f 1'04fl/TjI* ( 5 7 )  

This equation shows that increasing the liquid density p2 or the surface tension r~ 
is stabilizing, but increasing the gas density p1 is destabilizing. The effect of the 
jet radius is more complex, J'& reaches a minimum at rj ,  determined by 

rj, min = 0 * 5 6 [ ~ / ( ~ 2 - ~ 1 ) g I ' .  (58) 

Therefore increasing the jet radius for values smaller than rj ,  min is destabilizing, 
while for values larger than rj ,  min it is stabilizing. 

4. Conclusions 
The results of the present work can be summarized as follows. 
(i) The variational approach to stability problems, which had already been 

applied to stagnant fluids, was found to be also valid for systems in which the 
fluids are in motion. However one has to limit oneself to problems in which inertia 
and viscous effects are small compared with surface tension effects. 

(ii) Solution of the stability problem of a jet-liquid interface by the variational 
approach leads to results which fall within the range of accuracy of the experi- 
mental data. It was found that increasing surface tension or liquid density has a 
stabilizing effect, while increasing the gas density or jet velocity is destabilizing. 
A jet radius rj, minfor which the critical jet velocity reaches a minimum exists and, 
for radii smaller than rj ,  min, increasing the jet radius is destabilizing, while it is 
stabilizing for radii larger than rj ,  min. 

In  the present analysis a pressure distribution from which the interface could be 
determined was assumed; a more complete analysis would have to solve the flow in 
both fluids simultaneously. This leads to serious problems since the interface is a 
deformable surface. The results of the application of the variational method to the 
jet problem show the method to be very successful. Remarkable results were also 
obtained for the stability problem of small gas bubbles moving through liquids 
because of their own buoyancy (see Berghmans 1970). This is not surprising 
since, because of its generality, this method has a wide range of applicability. 
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